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Abstract—There are life-long ramifications for the 35% of children entering kindergarten already behind in language skills and

social-emotional development. Research has shown that differences in the quality and style of parent-child interaction are the leading

cause of this disparity. Unfortunately, few technical solutions exist to reduce and democratize the work of highly trained early

intervention specialists. In this paper, we present a model to automatically classify parent-child interactions for both behavioral and

emotional content using paralinguistic and linguistic features from speech. We examine which features are the most predictive, how

emotion and behavior relate in these interactions, and introduce a framework for implementing a fully-automated system for real-world

scenarios. We show 80% and 45% accuracy classifying behavior and emotion labels respectively, with some noise sensitivity. This

model is a fundamental step towards an automated solution for empowering parents to expedite their child’s social-emotional and

language development. Our system enables a variety of powerful applications for parents, researchers, and practitioners.

Index Terms—PCI, PCIT, Speech Emotion Recognition, Behavioral Coding.
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1 Introduction

School readiness is imperative to the long-term success
of American children. [1], [2] At the age of five, school

readiness predicts future success in elementary and high
school, future earning potential, and mid-career social class.
Unfortunately, 35% of children entering kindergarten are
not school-ready; moreover, a significant disparity between
the readiness of low- and high-income children is well docu-
mented. [1]

This issue first became prominent with Hart and Risley’s
1995 paper revealing a 30 million-word gap by age 3 between
low and high-income families. [3] In their paper, they demon-
strated the word gap corresponds with a reduction in the
child’s IQ and vocabulary skills. Recent work has shown that
major cognitive and language deficits at this age are not as
related to the quantity of words spoken as to the quality of
parent-child interactions in the home. [4] Practices such as
conversational turn taking, ’parentese’ inflection, expressive-
ness, engagement, and dialogic techniques (which include
extension, repetition, completion prompts, and distancing)
all correlate strongly with positive learning outcomes. [5],
[6], [7]

The quality of parent-child interaction is also crucial
for social-emotional development. Up to 14% of children
under 5 have behavioral problems that impact their school
performance. [8] Parenting style, as well as parental positive
affect, warmth, and expressivity have been shown to mitigate
the likelihood of social-emotional issues. [9], [10], [11], [12],
[13]

There is an increasing body of research suggesting that
language learning and social-emotional development are
fundamentally linked, and must be studied together. [11],
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[14], [15], [16] Expressive language is a key tool for emotion
regulation, and the use of language that identifies an internal
state corresponds to both language ability and emotional
maturity. Strategies that work well for language outcomes
in a parent-child dyad are designed with similar scaffolding
and engagement techniques as those for social-emotional
competence. [17], [18], [19]

While it is clear that there are life-long ramifications for
falling behind before the age of 5, and that the skill of the
parent in a parent-child interaction is the strongest driver
of success, there are no publicly available options to provide
parents feedback. In general, problems are recognized only
after a significant language deficit or emotional issue has
become apparent in a school setting, and a trained expert
is brought in to train the parent using some form of Parent
Child Interaction Therapy (PCIT). [20] $5 billion in gov-
ernment funding has recently been funneled into these high-
touch, early intervention programs nationwide. [2]

In this paper, we analyze the feasibility of a machine-
learning system to automatically assess the behavioral and
emotional aspects of parent-child interactions from speech
recordings. Successful classification could provide invaluable
feedback to parents about their parenting style and their
child’s development, empowering them to adopt the optimal
techniques for positive outcomes. This technology could also
have powerful applications as a research tool to assess the
confluence of factors that influence early childhood learning.

2 Related Work

2.1 Machine Learning

Support Vector Machines (SVM) are linear discriminant
classifiers frequently used in speech classification tasks. Sup-
port Vectors represent outlines in the feature space and make
the model fit better to the training data. The tolerance
of the optimization algorithm is controlled by the training
complexity parameter C. For larger C, the algorithm tends
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to generate more support vectors, which leads to overfitting.
In the worse case, all training samples are represented by
a support vector. However, because of their generalization
properties, SVM are frequently used in speech and speech
emotion classification.

Hidden Markov Models (HMM) are generative classifiers
frequently used in speech recognition and discourse modeling
[21]. This type of model will produce strong results for tran-
sition probabilities between states, and will handle uneven
class distributions well. Unfortunately, HMM do typically
not include a mechanism for unsupervised integration of
long-term dependencies.

A nonlinear discriminative classifier often used when
large numbers of training samples are available is based
on neural networks (NN). The non-linear mapping capa-
bility, however, raises problems when applied on smaller
sample-numbers, in which case overfitting may occur. In this
work we use Long-Short Term Recurrent Neural Networks
(LSTM-RNN) to model longer term dependencies of parent
child interaction, like parent temperament or mood. A de-
tailed description of LSTM can be found for example in [22].

2.2 Parent Child Interaction

There are many schools of thought around social-emotional
and language development which inform the techniques
that specialists use as they engage with delayed children.
However, a few systematic approaches to therapy exist that
warrant mention.

Parent Child Interaction Therapy (PCIT) is a system
developed by the creator of the DPICS behavioral coding
system we used in this study, which will be described in
a later section of this paper. PCIT is informed heavily by
initial observation and coding of the behaviors we are train-
ing our system to recognize. [20] It is a behavioral parent
training program, in which parents are coached through
their play interactions with children 2-7 years old. It has
been shown to be effective, cost-effective, and generalizable
to the home. It is practiced widely around the world. [23],
[24], [25]

One of the other important initiatives in this space
is the LENA project. LENA is a hardware recorder that
monitors parent-child interactions, counting words, conver-
sational turns, and monitoring the environment. Right now
LENA is running small pilot studies in Rhode Island, where
they are focused exclusively on literacy development. They
currently do not offer insights or advice with their data, but
supplement trained behavior specialists with the data who
consult with the enrolled families. LENA represents the most
sophisticated technical presence in this space today. [6]

Despite the large amount of research in this area, there
are relatively few studies that attempt to model parent-child
dyads. In [26], a state space model is presented for parent-
child interactions in order to assess emotional flexibility. In
[27], a structural equation model is used to show a mother’s
emotion talk is predictive of a child’s emotion talk, with up
to four layers of predictive relevance. These studies informed
our thinking about the role of time-dependence in our model.

3 Speech Dataset
In order to create a parent-child audio analysis system, an
appropriate speech corpus is needed. A thorough search re-

vealed two free options for child speech– the CMU CHILDES
database, and Northwestern’s OSCAAR database, which
includes the kidLUCID dataset. [28], [29], [30] No options
were available with preexisting behavioral and emotional
labeled data. After extensive auditioning, we decided to use
recordings from the Gleason 1988 experiment which are part
of the CHILDES database. [31]

The Gleason audio samples include 24 children, 12 girls
and 12 boys, ages 2 to 5. Each child is recorded twice–
once interacting with the mother, and once with the father–
in 50 minute play sessions in which they attempt three
activities (a building task, a reading task, and a shopping
play task). These varied tasks provided a variety of emotion
and interaction style, as well as a representative variety of
real world noise corruption.

Of these 48 recorded interactions, only fourteen included
timestamped/easily separable utterances (and only one of
those featured the mother). For this study, easily separable
3 hour-long father play sessions were used (Andy, Eddie,
and David from the database). Each child was male and
three years old, and each recording was annotated with a
full transcript and morphosyntactic coding which we used in
our analysis.

3.1 Coding Scheme: Behavior

The Dyadic Parent-Child Interaction Coding Scheme
(DPICS) is an industry standard that has been in wide use
since 1981. It has gone through three revisions, and has been
validated in hundreds of publications as a meaningful, pre-
dictive tool for analysis of behavior and a predictor of social-
emotional development in parent-child interaction. [32], [33],
[34], [35]

The 2004 DPICS-II coding scheme is a 100-page docu-
ment with complex coding rules for the numerous categories.
A handful of physical codes were dropped from our audio-
only project, leaving us with 21 labels. Nine of the labels are
unique to parents and three are unique to children, as shown
in the coding scheme below.

Parent-Only Labels Label #
Direct Command 1
Indirect Command 2
Labeled Praise 3
Unlabeled Praise 4
Information Question 5
Descriptive/Reflective Question 6
Reflective Statement 7
Behavioral Description 8
Neutral Talk 9
Parent and Child Labels Label #
Negative Talk 10
Playtalk 11
Answer 12
No Answer 13
Comply 14
No Comply 15
Yell 16
Whine 17
Laugh 18
Child-Only Labels Label #
Command 19
Question 20
Prosocial Talk 21

Fig. 1: DPICS-II Labels, Adapted for Audio-Only
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3.2 Coding Scheme: Emotion

A 25 label system for emotion classification as shown in [36]
was used to label each utterance with discrete emotion.

3.3 Labeling

Both of the authors independently applied the DPICS stan-
dard to label the same conversation data from CHILDES.
After labeling 2000 utterances, the results were compared.
A label of zero implied either ambiguity or a mismatch
between the audio and the transcript. There was substantial
disagreement between the coders; in particular, there was
one systematic coding difference between Neutral Talk (label
9) and either Prosocial Talk (label 21) or Play Talk (label
11). After consulting the manual in more detail, these labels
were re-evaluated. All other disagreements were re-coded as
label 0 and thrown out of further analysis.

Altogether, slightly over 25% of the labeled data was
unused due to classification disagreement. The distribution
of data is highly non-uniform as shown in Figure 2, which
presents a particular challenge for robust detection and
training for less frequent classes.

Fig. 2: Final DPICS Behavior Label Distribution.

For emotion data, the coding scheme is much simpler
and less confusing. Currently, no cross-validation of emotion
label agreement has been done, but in future revisions the
authors will include some justification of coding agreement
for emotion labeling as well. The coding distribution can be
seen in Figure 3, with radius corresponding to frequency.

4 System

After finalizing our source audio, separating it into ut-
terances, and coding it with both emotion and behavior
labels, the next step was to create relevant paralinguistic and
linguistic feature vectors to use as inputs into our machine
learning models. With a cross-correlation evaluation metric,
we could then rank and select the most relevant features
for each model we constructed: the parent-emotion model,
the parent-behavior model, the child-emotion model, and
the child-behavior model. For each of these models, we
trained and evaluated three variants: (1) stateless SVM, (2)
memoryless but stateful HMM, and (3) stateful and long-
memory capable deep learning LSTM RNNs. Finally, we
built additional SVM, HMM, and LSTM RNN variants to
analyze the relationship between behavior and emotion in
the parent-child dyad.

Fig. 3: Label Emotion Label Distribution.

4.1 Linguistic Features

The set of 1,918 linguistic features tested in this analysis
can be divided into four main categories: vocabulary, syntax,
sentiment, and repetition. Similar techniques were used for
both vocabulary and syntax features. Firstly, common words
and parts of speech were assigned weights for each class,
based on their likelihood to appear within it. To compute
a feature, each utterance received 22 best guess probabilities
–one for each potential label– which were simply the sum of
the probabilities that the utterance’s individual words and
parts of speech belonged with that label.

Normalization for these probabilities was computed us-
ing a variety of techniques– (1) the probability of a word
or part of speech to belong to a given class versus others
(# occurrences in this class / # occurrences in total), (2)
the probability of the word to appear in a given utterance
of this class (# occurrences in this class / # utterances of
this class), (3) the probability that the word belongs to an
important section of the class vocabulary (# occurrences
in this class / # words in this class), and finally (4) the
probably of being in the current class vocabulary weighted
by the likelihood of class distribution. These are all valid
ways of thinking about probabilistic weighting of a given
word or part of speech, so instead of making a best guess, we
decided to test all of them and reduce the features down at
a later stage.

Beyond individual words and parts of speech, common
bi-grams and tri-grams (two and three word phrases occur-
ring together) were also used in the context of their relative
co-occurrence with different class labels. In these cases, the
beginning of the sentence and the end of the sentence were
also included as ’words’. Each utterance was again given
a likelihood score of coming from any individual class by
combining the probabilities of all the common ngrams in
that phrase. In this way, common syntactic structures and
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common phrases could be found.
Additionally, appearances of extremely common or class-

unique words, bi-grams, and tri-grams were treated each as
binary features.

While these probabilities were computed over the three
conversations that we labeled, we also generated lists of
common elements from all 48 transcripts in the CHILDES
database. We compared Fathers and Mothers vocabulary,
syntax, and ngrams separately. Based on this analysis, we
concluded that Fathers and Mothers use a nearly identical
distributions of words and syntax. We also confirmed that
our feature set was representative of the entire population,
and therefore generalizable.

Beyond analyzing vocabulary and syntax, sentiwordnet
was used to compute a positive and negative sentiment score
for each phrase. Sentiwordnet is an open library organized
into ’synsets,’ or groups of synonyms. Each group has a
positive or negative score associated with it. The AFINN
database was used to create an additional, independent
sentiment feature. This database ranks individual words on
a +-5 point valence scale. Both AFINN and sentiwordnet are
common tools for opinion mining. [37]

Sentiment scores were computed with no normalization
per utterance or with a SQRT(length) normalization. Ad-
ditional sentiment-based features included the previous ut-
terance’s score, the sentiment of the previous two or three
utterances, and the cumulative sentiment of the entire con-
versation until this point. These curated features attempt to
introduce ’mood’ and emotional parent-child synchrony into
the feature vector.

Finally, repetition features were introduced. Repetition
was computed using repeated words and parts of speech
between the current and previous utterance, both occur-
ing at random as well as in the proper order (which is
particularly important for syntax). Ordered repetition did
not penalize additional intervening words in the original
order– this preserves instances of parental extension (i.e.
child: ”I have a car!” parent: ”You have a big, blue car!”).
Normalization was computed using the length of the shorter
phrase.

Repetition was also calculated against the penultimate
and antepenultimate utterances, to allow for normal inter-
jections that may separate reflective statements in conver-
sation. Sentiment repetition/synchrony (i.e. two positively
scored or negatively scored utterances in a row) was also
captured.

4.2 Paralinguistic features

The Geneva Acoustic Parameter Set (GeMAPS) featureset
contains a total number of 88 parameters. This featureset
combines promising features from large brute-force feature-
sets and hand-crafted, psychologically motivated features. It
contains features related to frequency, energy and spectrum.
The set also contains cepstral parameters and dynamic
parameters (delta regression coefficients and difference fea-
tures, slopes of rising and falling F0 and loudness segments
encapsulate some dynamic information). Furthermore, func-
tionals are applied to the low-level descriptors (LLD). The
paralinguistic features were extracted using openSMILE
[38], an audio analysis toolbox frequently used in speech
emotion analysis.

Frequency related LLD Group
Pitch: log. F0 prosodic
Jitter: F0 = period length deviations voic.q.
Formants 1,2,3: Centre frequency spectral
Formant 1: Bandwidth spectral
Energy related LLD Group
Shimmer (local) voic.q.
Sum of auditory spectrum (loudness) prosodic
Harmonics-to-Noise Ratio(HNR) voic.q.
Spectral related LLD Group
Alpha ratio (at 50-1000Hz,1-5kHz) spectral
Hammarberg index spectral
Spectral slope at 0-500,500-1500Hz spectral

Formants 1,2,3: Energy ratio, ratio energy
center frequency to F0 energy spectral

Harmonic difference H1,H2: Ratio energy
of first and second F0 harmonic spectral

Harmonic difference H1,A3: Ratio energy
of first F0 harmonic and highest formant
3 harmonic

spectral

Functionals applied to all LLD Group
Arithmetic mean, normalized std.dev. moments
Functionals applied to loudness,pitch Group
Percentile 20/50/80th value,range percentiles
Rate of loudness peaks temporal
Mean length/std.dev. of F0 > 0 and F0 = 0 temporal
Continuous F0 > 0 rate temporal
Mean / std.dev. of rising / falling slopes peaks

Functionals applied to alpha ratio,
Hammarberg index,spectral slopes Group

Arithmetic mean over unvoiced segments moments

Fig. 4: Features in minimal GeMAPS featureset, derived
from LLD and functionals.

4.3 SVM/HMM/LSTM-RNN

Initially, we created four models, looking at each pair of child
or parent with emotion or behavior. For each of these four
models, we trained and evaluated three variants: (1) stateless
SVM, (2) memoryless but stateful HMM, and (3) stateful
and long-memory capable deep learning LSTM RNNs. We
used Weka 3 [39] for SVM analysis, and Python for building
the HMMs and LSTM RNNs.

We built three variants to evaluate different models of
time-dependent state information. In particular, we hypoth-
esize that temperament, mood, and past behavior are very
relevant to the accurate prediction of current behavior and
emotion. We also hypothesize that immediate interaction
state information is highly relevant– for instance, the pre-
vious statement (i.e. a question) and mood (i.e. happy) of
the parent is likely to prompt the child response (i.e. a
happy answer, assuming past behavior indicates a healthy,
emotionally synchronous relationship).

SVMs are static, and thus any state information must
be designed into the feature vector. Generally, SVMs are
not used for adaptive, time-variant systems like this one.
HMMs provide a better alternative, and can estimate state
in an unsupervised way, however they are not optimized
to handle long-term dependencies as well as short term
ones. LSTM-RNNs provide the framework for accurately
counterbalancing long-term and short-term dependencies in
an unsupervised way.

On the other hand, more unsupervised complexity re-
quires more data to train accurately. This can be a serious
limitation for advanced models like the LSTM-RNN, which
should be trained using tens of thousands of interactions
to begin recognizing latent connections between long-term
behavior patterns.

After building and evaluating these three techniques for
predicting emotion and behavior, we used the same machine
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learning models to examine basic relationships between the
two. Instead of our normal paralinguistic and linguistic input
vector, we used previous emotion, previous behavior, and
current emotion to predict current behavior and vice versa.

5 Results

In this section we present a preliminary evaluation of the sys-
tem. All of the following analysis was done using ’leave one
conversation out’ cross-validation– so one father’s behavior
is predicted based on the other two.

5.1 Feature selection

5.1.1 Pearson Product Moment Correlation (PPMC)

With this cross correlation evaluation metric, relevant fea-
tures and their linear relationship between the classes
[40] are captured. Given a number of n pairs of samples
(x1, y1), ..., (xn, yn), the PPMC rxy can be calculated as

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2
. (1)

We used this metric as a measure for ranking and selecting a
subset of our previously defined generic set of linguistic and
paralinguistic features.

5.1.2 Feature Analysis

Using the PPMC, each of the four models was evaluated
to select and understand the most relevant features. Each
feature was grouped into a larger category– paralinguistic,
vocabulary ngrams, syntax ngrams, repetition, and senti-
ment. The charts below show how many of the top 100 most
predictive features fell into each category.

Additionally, we corrupted the transcript to simulate real
world conditions, where no canonical transcript is available
and speech-to-text is likely to be unreliable. In each graph,
increasing rates of transcript corruption are introduced by
removing words and syntax information from each utter-
ance.

General trends show that linguistic features are more
predictive of behavior, and paralinguistic features are more
predictive of emotion. Parents and children are similar,
with the caveat that linguistics matter more in the father
emotion model. This suggests adults use more emotionally
descriptive language.

Sentiment analysis from the transcript appeared to be
an ineffective feature. Repetition, on the other hand, proved
to be very valuable predictor for the few classes in which it
matters (i.e. Reflective Statements and Questions).

5.2 SVM, HMM, and RNN Performance

Figure 9 shows the performance of our three child models
for both behavior and emotion, while Figure 10 shows the
parent model. For emotion, performance is relatively stable
with increasing corruption of the text transcript (along the x
axis) because paralinguistic features dominate the emotion
model accuracy. For behavior, linguistic features matter
more, and thus performance degrades roughly linearly with
increasing corruption. LSTM-RNNs were chronically under-
trained, and all versions performed with a 1% average recog-
nition rate. For behavior the HMM was the best with an

Fig. 5: Categories of the 100 Most Predictive Features for
the Child Behavior Model.

Fig. 6: Categories of the 100 Most Predictive Features for
the Child Emotion Model.

average recognition rate around 80%, followed very closely
by the SVM approach. For emotion, the SVM gave the best
performance, with a 50% average recognition rate for the
parent, and a 40% rate for the child. The HMM version
performed markedly worse at 20 and 2% recognition rates,
respectively.
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Fig. 7: Categories of the 100 Most Predictive Features for
the Father Behavior Model.

Fig. 8: Categories of the 100 Most Predictive Features for
the Father Emotion Model.

5.3 Emotion and Behavior: Relationships

After analyzing behavior and emotion models separately, we
turned our attention to analyzing the relationship between
behavior and emotion during parent-child interaction. First
we examined frequent pairs of emotion and behavior labels.
Some notable common pairs were ’Information Question’
and ’Interest’, as well as ’Neutral Talk’ and ’Suprise’.

To examine this relationship further, we used past be-

Fig. 9: Unweighted Average Recognition Rate of Child
Models.

Fig. 10: Unweighted Average Recognition Rate of Parent
Models.

havior, past emotion, and current emotion to predict current
behavior. Using SVMs, we found that for these parents, emo-
tion is more predictive of behavior than vice versa (Figure
11). Looking at the relevant features in Figure 12, we see
that current emotion is best predicted by previous emotion,
while current behavior is best predicted by current emotion.
Emotion is not only the better predictor in all cases, it is
more reliably predictable based on the previous state than
behavior.

There are more interesting insights to draw from this
type of emotion/behavior analysis on an individual basis.
With enough individual data, this type of analysis could
provide answers to questions like: How does your mood affect
your interaction with your child? How does your behavior af-
fect your child’s mood? How synchronous are your emotions
with your child, and are you able to improve?

6 Discussion and Future Work

Our results provide interesting insight into the relative value
of linguistic and paralinguistic features for predicting emo-
tion and behavior, and offers interesting insights into the
relationship of emotion and behavior itself.
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Fig. 11: Emotion and Behavior Models.

Fig. 12: Relative Feature Relevance for State Prediction.

The strong behavior recognition rate is encouraging,
though a more thorough analysis of the effect of non-uniform
class distribution might reveal some interesting shortcom-
ings for the less common classes.

The recognition rate for emotion is much lower, but also
encouraging. This real-world audio was full of very loud ’play
sounds’, drastic changes in distance and clarity of the speak-
ers, concurrent talking, and abrupt, inaccurate separation
of utterances. Pre-processing the audio could dramatically
improve this low recognition rate.

It is interesting to see that HMM works well for be-
havior, which have specific call-and-response patterns, but
does much more poorly for emotion estimation. Emotion
in parent-child interactions tend to be purposely over-
emphasized and rapidly changing, so it is not surprising that
pure paralinguistic analysis of an utterance provides the best
results.

Our LSTM RNNs were terribly under-seeded. However,
with enough new data, it is still our belief that this deep
learning approach can reveal and account for more inter-
esting latent time-dependencies in the data. Eventually we
hope to code enough data to train such a model.

6.1 Full System Architecture

At the outset, we had a vision of a mobile application that
could record speech in parent-child interaction and provide
meaningful, immediate insight and analysis to the parent.
To understand the feasibility of such a system (outlined
in Fig 13), we built a native application that records and
uploads audio to a server, as well as scripts that (1) automat-
ically separate child and parent speakers, and (2) generate

Fig. 13: Schematic of the Full System.

transcripts from raw audio using the IBM Watson API.
The separation script uses the amplitude envelope of the
incoming audio, as well as F0 estimation based on running
auto-correlations, to pull out the distribution of F0 for each
20 ms speech section of the entire interaction. It then fits
two Gaussians to the F0 distribution to make a decision
boundary for whether an utterance belongs to the child
or a parent. This data is incredibly noisy, and to work
well, it will likely be necessary to include more advanced
logic (even potentially a machine learning model for speaker
separation).

We also characterized the IBM Watson speech-to-text
service against 500 utterances from the CHILDES database,
and found a 14.6% accuracy. This underrepresents the adult
accuracy (closer to 25%) and overrepresents child accuracy
(closer to 0%). This is not surprising– the audio quality is
poor and child speech models are a niche technology that
requires specific forms of pre-processing. We expect much
higher accuracy can be rectified by training our own child
speech model, and pre-processing the audio.

Currently, the pieces of this system are not robust enough
to support a working implementation of our model. However,
there are concrete and clear steps forward to solve many of
the most pressing issues that stand in the way of a real-world
implementation.

6.2 Applications

The first application we’re pursuing is an iPhone application
that can provide useful analysis and advice, democratizing
the early intervention techniques to a wide audience. This
application will eventually be able to adapt to individual
behavioral and emotional patterns, and give very specific
advice based on parenting style that is relevant to the child’s
learning level and personality.

Another application we foresee is an automatic TV
cartoon grader for parents. [41] using DPICS to analyze
cartoons, and cautioned that ’family-friendly’ programming
does not always model prosocial behavior. This tool would
be useful to inform both personal and policy decisions
around family programming.
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We also see this tool having an impact on a few aspects
of research. Current PCIT therapists manually code using
DPICS on a regular basis. With further refinement, this
system could automate that work.

We believe, with enough adoption, this model could lead
to more nuanced and specific advice for achieving specific
learning outcomes. Should parenting style adapt to the
child’s personality, behavior, or mood? What are the appro-
priate dynamics of parenting strategy to promote behavioral
and language learning?

Finally, the estimation of emotion and behavior also
makes this a very useful tool for HCI research around
any parent-child intervention. With this technology, we can
quantify the efficacy of an intervention to drive usage, alter
mood, and change behavior.

6.3 Concerns and Future Work

The first issue we will address is the lacking quantity and
accuracy of our DPICS coding. We have several ideas for
crowd-sourcing reliable recommendations, however our pri-
mary strategy will be to contact DPICS practitioners and
ask for access to their professionally coded audio. Other
options include paying a professional to code our data, or
receiving DPICS training. With a large, accurate corpus
of data, we can draw stronger, more interesting, and more
predictable conclusions.

Our other main challenges center around audio qual-
ity, which affects paralinguistic analysis, speaker utterance
separation, and speech-to-text accuracy. We are planning
to incorporate noise reduction, transient detection (for
blocks hitting and clapping), and voice activity detection to
help mitigate these concerns. Spatialized audio recording–
leveraging stereo microphones– could significantly improve
speaker separation and noise reduction at the expense of
additional hardware.

We will also need to train our own speech-to-text model
using CMU Sphinx or another open service for accurate child
speech recognition instead of using an off-the-shelf solution.

7 Conclusion

There are serious, life-long implications for the 35% of chil-
dren entering kindergarten already behind in language skills
and social-emotional development. Research has shown that
differences in the quality and style of parent-child interaction
are the major cause of this disparity. In this paper, we
presented a speech analysis system to automatically assess
emotion and behavior in the parent-child dyad, with the goal
of enabling technology to address this problem.

We showed that both paralinguistic and linguistic speech
features are important for these models to succeed. We
demonstrated that paralinguistic features are important for
predicting emotion, particularly in the child model. For
behavioral coding, linguistic features were the most impor-
tant. Repetition, though representing a small fraction of
labels, was also a great indicator. Sentiment analysis of a
conversation transcript was not.

We demonstrated a high success rate of 80% for auto-
matically predicting behavior in the parent-child dyad using
HMMs. This success is sensitive to transcription errors, so an
accurate speech-to-text engine is important. However, even

with high levels of corruption the recognition rate maintains
around 50%.

We demonstrated a success rate of 45% for emotion pre-
diction using SVMs. This success rate is encouraging, though
it speaks to the difficulties of working with noisy, real-word
data. We believe we can improve this substantially with
further audio pre-processing and noise reduction techniques.

Beyond HMMs and SVMs, we attempted to create a
deep learning model that accounts for temperament, mood,
and short-term dyadic influence on the current predictions.
Unfortunately, our relatively small dataset and our large,
non-uniform classification space rendered our efforts to train
a neural network futile. However, we now have an infras-
tructure in place to quickly train the model once we have
more data, and we’re still optimistic that unsupervised deep
learning techniques will eventually overtake our HMMs in
accuracy.

After analyzing behavior and emotion models separately,
we turned our attention to analyzing the relationship be-
tween behavior and emotion during parent-child interaction.
Again using SVMs, we found that that mood is more pre-
dictive of behavior than vice versa. We believe there are
interesting insights to draw from this type of analysis on
an individual basis to show powerful links between behavior
and mood.

Finally, we built out (1) an algorithm for speaker/utter-
ance separation, (2) a UI for speech data collection, and
(3) an interface for automatic speech-to-text translation,
in order to estimate how difficult it would be to build a
real world, automated system around this machine-learning
model. While there are several technical hurdles still to
overcome, we believe they are all manageable.

This work represents a thoughtful analysis of a compre-
hensive model for automatic classification of parent-child
interaction. It is intentionally geared towards real-world
applications using real-world data. We are hopeful that
this paper lays the groundwork for the development of a
useful and robust automatic system for parents to use with
their children, psychologists to use with their patients, and
researchers to use with their subjects.

References

[1] J. B. Isaacs, “Starting school at a disadvantage: The school
readiness of poor children. the social genome project.,” Center
on Children and Families at Brookings, 2012.

[2] S. Daily, M. Burkhauser, and T. Halle, “A review of school
readiness practices in the states: Early learning guidelines and
assessments. early childhood highlights. volume 1, issue 3.,”
Child Trends, 2010.

[3] B. Hart and T. R. Risley, “The early catastrophe: The 30 million
word gap by age 3,” American educator, vol. 27, no. 1, pp. 4–9,
2003.

[4] J. L. Malin, N. J. Cabrera, and M. L. Rowe, “Low-income
minority mothers’ and fathers’ reading and children’s interest:
Longitudinal contributions to children’s receptive vocabulary
skills,”Early childhood research quarterly, vol. 29, no. 4, pp. 425–
432, 2014.

[5] D. S. Arnold and G. J. Whitehurst, “Accelerating language de-
velopment through picture book reading: A summary of dialogic
reading and its effect.,” 1994.

[6] F. J. Zimmerman, J. Gilkerson, J. A. Richards, D. A. Christakis,
D. Xu, S. Gray, and U. Yapanel, “Teaching by listening: The im-
portance of adult-child conversations to language development,”
Pediatrics, vol. 124, no. 1, pp. 342–349, 2009.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

[7] D. G. K. Nelson, K. Hirsh-Pasek, P. W. Jusczyk, and K. W. Cas-
sidy, “How the prosodic cues in motherese might assist language
learning,” Journal of child Language, vol. 16, no. 01, pp. 55–68,
1989.

[8] J. L. Cooper, R. Masi, and J. Vick, “Social-emotional develop-
ment in early childhood: What every policymaker should know,”
2009.

[9] D. Benoit, “Infant-parent attachment: Definition, types, an-
tecedents, measurement and outcome,” Paediatrics & child
health, vol. 9, no. 8, p. 541, 2004.

[10] A. M. Conway, “The development of emotion regulation: The
role of effortful attentional control and positive affect,” 2005.

[11] A. Adger-Antonikowski,“A functionalist perspective of language
ability and behavioral synchrony in the development of emotion
regulation,” 2008.

[12] S. A. Denham, S. M. Renwick, and R. W. Holt, “Working
and playing together: Prediction of preschool social-emotional
competence from mother-child interaction,” Child Development,
vol. 62, no. 2, pp. 242–249, 1991.

[13] J. L. Carson and R. D. Parke, “Reciprocal negative affect in
parent-child interactions and children’s peer competency,” Child
development, vol. 67, no. 5, pp. 2217–2226, 1996.

[14] B. H. Ellis, “Relations between emotion language and emotion
regulation in maltreated preschoolers,” 2000.

[15] P. M. Cole, L. M. Armstrong, and C. K. Pemberton, The role
of language in the development of emotion regulation, pp. 59–77.
Child development at the intersection of emotion and cognition.,
American Psychological Association, Washington, DC, 2010.

[16] W. S. Gilliam and P. B. de Mesquita, “The relationship between
language and cognitive development and emotional-behavioral
problems in financially-disadvantaged preschoolers: A longitudi-
nal investigation,” Early Child Development and Care, vol. 162,
no. 1, pp. 9–24, 2000.

[17] W. B. Brooke Graham Doyle, “Promoting emergent literacy
and social-emotional learning through dialogic reading,” The
Reading Teacher, vol. 59, no. 6, pp. 554–564, 2006.

[18] D. M. Almeida, E. Wethington, and A. L. Chandler, “Daily
transmission of tensions between marital dyads and parent-child
dyads,” Journal of Marriage and the Family, pp. 49–61, 1999.

[19] E. K. Adam, M. R. Gunnar, and A. Tanaka, “Adult attachment,
parent emotion, and observed parenting behavior: Mediator and
moderator models,” Child development, vol. 75, no. 1, pp. 110–
122, 2004.

[20] H. Switzer, The use of parent-child interaction therapy with
parents and children referred by a child protective service. 1997.

[21] B. J. Grosz, S. Weinstein, and A. K. Joshi, “Centering: A frame-
work for modeling the local coherence of discourse,” Computa-
tional linguistics, vol. 21, no. 2, pp. 203–225, 1995.

[22] A. Karpathy, J. Johnson, and F.-F. Li, “Visualizing and under-
standing recurrent networks,” arXiv preprint arXiv:1506.02078,
2015.

[23] A. B. Tempel, S. M. Wagner, and C. B. McNeil, “Parent-child
interaction therapy and language facilitation: The role of parent-
training on language development.,” The Journal of Speech and
Language Pathology–Applied Behavior Analysis, vol. 3, no. 2-3,
p. 216, 2009.

[24] A. T. Naik-Polan and K. S. Budd, “Stimulus generalization of
parenting skills during parent-child interaction therapy.,” Jour-
nal of Early and Intensive Behavior Intervention, vol. 5, no. 3,
p. 71, 2008.

[25] M. E. Goldfine, S. M. Wagner, S. A. Branstetter, and C. B.
Mcneil, “Parent-child interaction therapy: An examination of
cost-effectiveness.,” Journal of Early and Intensive Behavior
Intervention, vol. 5, no. 1, p. 119, 2008.

[26] T. Hollenstein and M. D. Lewis, “A state space analysis of
emotion and flexibility in parent-child interactions.,” Emotion,
vol. 6, no. 4, p. 656, 2006.

[27] D. Ridgeway, E. Waters, and S. A. Kuczaj, “Acquisition of
emotion-descriptive language: Receptive and productive vocab-
ulary norms for ages 18 months to 6 years,” Developmental
psychology, vol. 21, no. 5, pp. 901–908, 1985.

[28] B. MacWhinney, The CHILDES project: The database, vol. 2.
Psychology Press, 2000.

[29] Kendall, “Oscaar, http://oscaar.ling.northwestern.edu,” 2010.
[30] V. Hazan, M. Pettinato, and O. Tuomainen, “kidlucid: London

ucl children’s clear speech in interaction database.,”

[31] E. F. Masur and J. B. Gleason,“Parent–child interaction and the
acquisition of lexical information during play.,” Developmental
Psychology, vol. 16, no. 5, p. 404, 1980.

[32] S. Eyberg, M. Nelson, M. Duke, and S. Boggs, “Manual for the
dyadic parent-child interaction coding system,” Retrieved July,
vol. 28, p. 2006, 2005.

[33] J. L. Bessmer, The Dyadic Parent-Child Interaction Coding
System II (DPICS II): Reliability and validity. PhD thesis, 1998.

[34] M. M. Deskins, The Dyadic Parent-Child Interaction Coding
System II (DPICS II): Reliability and validity with school aged
children. PhD thesis, 2005.

[35] R. C. Foote, The Dyadic Parent-Child Interaction Coding Sys-
tem II (DPICS II): Reliability and validity with father-child
dyads. PhD thesis, 2000.

[36] B. Cardoso, O. Santos, and T. Romão, “On sounder ground:
Caat, a viable widget for affective reaction assessment,” in Pro-
ceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, pp. 501–510, ACM, 2015.
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